
Math2050A Term1 2017
Tutorial 4, Oct 12

Exercises

1. Let (an) be a sequence and a ∈ R satisfying the following:
for each ε > 0, there are infinitely many n ∈ N such that an ∈ (a −
ε, a+ ε).
Show that there is a subsequence (ank

) converging to a.

2. Show that a monotone increasing sequence is either convergent or prop-
erly diverges to +∞.

3. Suppose (an) is a sequence. Show that (an) is Cauchy is equivalent to
say that limn→∞ supp∈N |an+p − an| = 0.

4. Show that every contractive sequence is Cauchy. See textbook[Bartle]
3.5.7 Definition and 3.5.8 Theorem in p.88,89.

5. Given (xn) ⊂ R. Suppose
∑∞

n=1 |xn| < ∞, that is, limN→∞
∑N

n=1 |xn|
exists. Show that

∑∞
n=1 xn also exists in R.

6. Given (xn) ⊂ R and
∑∞

n=1 xn exists in R. Show that
∑∞

n=N xn → 0 as
N →∞.

7. Show the following:

(a) lim
x→−1

x2+2x+4
x+2

= 3.

(b) lim
x→3

2x+3
4x−9 = 3.

(c) lim
x→1

x3−1
x2−3x+2

= −3.

Solution
For Q1, Let n1 := min{n ∈ N : an ∈ (a−1, a+1)} and nk := min{n > nk−1 :
an ∈ (a− 1

k
, a+ 1

k
)} for k ≥ 2. By induction, every nk is well-defined because
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the set {n > nk−1 : an ∈ (a− 1
k
, a+ 1

k
)} is nonempty and by well-ordering prin-

ciple (1.2.1 in textbook[Bartle] p.12). It is a subsequence because nk > nk−1
for each k ≥ 2. By squeeze theorem, it converges to a.

For Q6, Let ε > 0. Note (
∑n

k=1 xk)
∞
n=1 is a Cauchy sequence in n. There

is N ∈ N such that for any m > n ≥ N , we have

|
m∑
k=1

xk −
n∑
k=1

xk| < ε

Therefore, |
∑m

k=n+1 xk| < ε. Lettingm→∞, |
∑∞

k=n+1 xk| ≤ ε. |
∑∞

k=n xk| ≤
ε holds for any n ≥ N + 1. This completes the proof.

For Q7(a), |x2+2x+4
x+2

− 3| = |x2−x−2
x+2

| = | (x+1)(x−2)
x+2

|. When ε > 0 is given,

the proof then is to find a small positive δ such that |x2+2x+4
x+2

− 3| makes

sense and |x2+2x+4
x+2

− 3| < ε. The δ-neighborhood is the punctured one.
We want x + 2 to be far away from 0. For example, one may restrict x ∈
(−3

2
,−1

2
)\{−1}. In this case, |x2+2x+4

x+2
−3| = | (x+1)(x−2)

x+2
| ≤ |

7
2
(x+1)

1
2

| = 7|x+1|.
If δ := min{ ε

7
, 1
2
}, then (−1 − δ,−1 + δ) \ {−1} ⊂ (−3

2
,−1

2
) \ {−1} and for

every x ∈ (−1− δ,−1 + δ) \ {−1}, we have |x2+2x+4
x+2

− 3| ≤ 7|x+ 1| < 7δ ≤ ε.

For easy grading, it is suggested to have a draft first and then give the
proof in a more systematic way as presented in solution for Q7(b),(c).

For Q7(b), Let ε > 0.
Let δ := min{1

2
, ε
10
}. Then, if x ∈ (3− δ, 3 + δ) \ {3}, we have

|2x+ 3

4x− 9
− 3| = |−10x+ 30

4x− 9
| = 10| x− 3

4x− 9
| ≤ 10|x− 3| < 10δ ≤ ε

For Q7(c), Let ε > 0.
Let δ := min{1

2
, ε
14
}. Then, if 0 < |x− 1| < δ, we have

| x3 − 1

x2 − 3x+ 2
+3| = |x

3 + 3x2 − 9x+ 5

x2 − 3x+ 2
| = |(x− 1)2(x+ 5)

(x− 1)(x− 2)
| = |(x− 1)(x+ 5)

x− 2
| ≤ 7

|x− 1|
1
2

= 14|x− 1| < 14δ ≤ ε
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